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MOTIVATION: To develop manganese-oxide based 
electrodes for Li-ion batteries in consumer and 
transportation applications

• High energy/capacity class –

- Mn layered oxide structures with rock salt domains (i.e.,   
composite electrode design)

• High power class  -

- Mn high-voltage spinel structures

• High-performance protective coatings to improve 
properties of cathode interface
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Compositional Phase Diagram

• Layered structures are closely related;

Li2MnO3 phase is interconnected or 

intergrown into active phases such as LiCoO2

or Li(NiMnCo)1/3O2

CHALLENGE: Mn-based oxides typically suffer 
from phase changes and dissolution problems during 
cycling in a lithium battery

• Composite design stabilizes the phase structure 
of the electrode material.  For example, the 
cathode in alkaline batteries is a composite 
γ-MnO2 structure that is successfully used in 
millions of commercial cells.  We are using a 
similar approach to the design of cathodes for 
lithium batteries

• Coatings are being developed to enhance stability 
of electrode/electrolyte interface, and improve 
interfacial electrode kinetics

Mn-based electrodes can meet safety, cost, and 
abundance targets necessary for the 
transportation market of EVs and HEVs
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Coatings...

KEY ENABLING TECHNOLOGY
DRIVERS UNDER DEVELOPMENT
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High energy...

• Stablized Mn(IV) layered phase yields 
170 mAh/g at 50 °C (100 cycles)

• Recent optimized compositions have 
yielded 200 mAh/g at room temperature

0.03Li2M’O3 • 0.97LiMn0.5Ni0.5O2
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High power...

• Cobalt stabilized 5 V spinel enhances 
cyclability

• Spinel series Li[Ni0.5-xCoxMn1.5]O4 (0<x<0.5)
synthesized, characterized and tested

(M=Mn, Ni, Co)

Themes
• Ni(II) and Mn(IV) redox combination in layered and 

spinel oxides provides stability and maximizes capacity. 

Examples:  Li[Ni0.5Mn0.5]O2 , Li[Ni0.5Mn1.5]O4

• Composite electrode design - Addition of rock salt 
components/domains (Li2M’O3) stabilizes layered oxides 
(see structural relationships).  Existence of rock-salt 
domains promotes Ni site immobility and invariance, 
thereby enhancing stability and electrochemistry.

Li in Li2MnO3 domains can provide Li source and Li 
conduction pathways in layered phase

Li2MnO3-> role of layered “MnO2” interconversion

• Coatings - modifying cathode interface

Examples (a) surface current distribution, 
(b) wettability of electrode/electrolyte interface, and 
(c) amphoteric scavenger of electrolyte impurities

CONCLUSIONS

ZrO2-coated LiMn0.5Ni0.5O2
electrodes show

enhanced cycling stability
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TEM of microtomed particle

ZrO2-coated LiMn2O4
electrodes show 
improvement in cycling 
stability at 50 °C
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Voltage profile of ZrO2-coated 
LiMn2O4 spinel electrode

• Composites of Mn-based oxides for cathodes in 
next-generation Li-ion batteries hold much 
promise for improved cycling performance and 
stability

Layered-layered and layered-spinel composites 
offer tailored features of high energy and/or 
high power for an end- application-based 
designed battery

• Coatings for composites will further improve 
interface of cathodes and boost electrochemical
capabilities such as interfacial kinetics, or greater 
resistance to corrosion
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